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Physical Review B, in press

Coupled s-Wave and d-Wave States in the Heavy Fermion

Superconductor Ulx_ Be

A. Langner, D. Sahu and Thomas F. George
Departments of Physics and Chemistry

239 Fronczak Hall
State University of New York at Buffalo

Buffalo, New York 14260

Abstract

In the heavy-fermion superconductor Ulx ThxBel 3, superconducting states

coexist for thorium concentrations 0 < x < 0.06. Assuming s-wave and d-wave

symmetries for these states, we derive a Ginzburg-Landau free energy

expression which couples s- and d-wave states and is rotationally invariant,

in contrast to the free energy expression proposed by Kumar and Wolfle (Phys.

Rev. Lett. 59, 1954 (1987)). We discuss in detail the consequences that

follow from our free energy relation. In particular, we predict that in the

above system there are two eigenfrequencies associated with the dynamics of

phase oscillations (internal Josephson effect) which are characteristic of the

s-wave and d-wave states.

PACS numbers: 74.70.Tx, 64.60.Cn, 74.20.De



In the heavy-fermion system Ulx ThxBe1 3, different superconducting states

have been found1 -7 to coexist for impurity concentration x in the range 0 < x

: x2 (x2 = 0.06). Two superconducting transitions are observed in specific

heat '
2 and critical field '

4 measurements. For undoped UBe1 3, the higher

temperature transition occurs at Th - 0.87 K, whereas the lower transition

occurs at T - 0.55 K. Upon doping with thorium beyond a critical

concentration x1 = 0.017, i.e., x 2 > x > x1 , the high-temperature and low-

temperature superconducting states are reversed from that in the undoped

material. 3 '4 We assume the two superconducting states in question to possess

even-parity spin-singlet s- and d-wave components. We are aware that an

interpretation of some of the properties of the superconducting state of the

UBe1 3 system in terms of an odd-parity state can also be forwarded; 8 however,

it is our interest to study the relevance of s- and d-wave coupling in this

material.

The study of coupling between s-wave and d-wave states is also relevant

to other heavy-fermion systems, e.g., La-doped UBe1 3 7 and UPt3.9 For the

high-Tc superconductors, the relevance of s-wave and d-wave coupling is

suggestive from the microscopic theoriesI0 ,11 based on the Hubbard model.

High resolution X-ray scattering experiments1 2 on the 123-superconductor,

YBa 2Cu3 07, indicate that there might exist a special interference betwen d-

and s-wave states. The coupling of superconducting states is reminiscent of

che classic A- to-B transition in superfluid 3He which involves coupling

between different spin-polarization states of the odd-parity triplet pairing -

of the quasi-particles. 1 3 ,14  Superconductivity due to d-wave and s-wave

states has also been considered by Anderson and Morel 15 and by Mcrm.in and

S tare. 
1 6
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In this paper we develop a model to explain the important electronic and

magnetic transitions observed in the Ulx ThxBel3 system. The higher

temperature transition in pure UBe1 3 is due to a d-wave state, while the lower

transition is due to an s-wave state coexisting with the d-wave state. We

assume, following Kumar and Wolfle (KW), 17 that thorium doping reduces the

transition temperature for the anisotropic d-waves due to impurity scattering

whereas the transition temperature for the isotropic s-waves is hardly

affected. Thus, for x > xl, the d-wave transition temperature T2 (- T2 ) is

reduced to a value lower than that of the s-wave transition temperature T 0(_

Th).

In even-parity spin-singlet superconducting states, the energy gap

function A(k) is related to the anomalous thermal average <ctc_ ,> of the

microscopic theory, c , being the electron annihilation operator with wave

vector k and spin t. We expand A() as a linear combination of the basis

function set (0 (r)), where 00(k) - (Cx + Cy + C )/4C , (C(y - (y C) and

02(r) - (Cx + Cy- 2Cz)/j-3 with Ci - cos(kia) (i - x,y,z and a the lattice

constant):

2

j -O

Ii(k) - Aj(k) exp(iU.) , j - 0,1,2 (Ib) .%

We restrict our analysis to angular momentum states 2 < 2 upon which the basis f]

functions ( ) can be replaced by the spherical harmonics Yj( ). Then j - 0 _

labels the s-states and j - 1,2 label the two d-state components of the Eg

irreducible representation of the octahedral point group, 0h' The order
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4Rparameter amplitudes A.(k) and the phases 0. are all real. Y0is a

constant, whereas YI and Y2 are analogous to the d 2 2 and d 2 orbitals,
x -y z

respectively, of atomic physics. The symmetry group of the gap function

is 1 8 "2 0 G x R x U(1), where G is the crystal point group, R is the time

reversal operator, and U(l) is a gauge transformation group. In coordinate

space, the Ginzburg-Landau free energy of the superconducting states (relative

to the normal state) can be written as F - J d3 r (FL + FG), where the free

energy density FL is restricted to fourth order in the order parameters and FG

contains the gradient terms. We write, 21 FL - FKW + F where,

F 2 + A 4 + 2  4 2 2 2 2 2 3KW " 0 0 2 2 + 2 O+ 2 0 2 62 OA2 c0 s 02 + y 1 AoA 2 cos 2 , (2a)

and

F - 4 22 22 2 22
E 2 1 +2A + f201 + _2Y 2 AOAcs 01 + 1A 1 A 2

Y6AiA 2cos (01-02) - J 1A0AA 2 2cos02 + cos(26 1 -2)] (2b)

In deriving Eq. (2) we have adopted the notation of Kumar and Wolfle

(KW)1 7 to facilitate comparison with their work; our Eq. (2a) is identical to

their Eq. (1). Note that Eq. (2a) alone, without Eq. (2b), is not

rotationally invariant, since the d-wave order parameter amplitudes aI and a2

transform as partner components of the irreducible two-dimensional

representation E of the cubic group 0 h' Equation (2) belongs to the product

representation A x E Note also that the coupling terms A A3 and A AIA
Ig 9' 0 2 nd A 1 2

arise from the fact that do Y2(i) , 0 and d Y 2 P ( )Y(M) 2rdo

respectively; these two terms transform into each other under symmetry
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operations of the 0h group. The gauge invariance of Eq. (2) follows from the

fact that 1 and 8, are measured relative to 0., the phase angle of the s-wave

state.

As usual, we assume that 0 - A0 (T-T0 ) and a 2 - A2 (T-T2 )' where To and T2

are the uncoupled s-wave and d-wave critical temperatures, respectively, and

that the other coefficients are independent of temperature. The coefficients

f0 and 02 are assumed positive and large, relative to the other fourth-order

coefficients, to insure stability. We assume the condition T2 > T0 for the

undoped material, whereas the reverse is true for the doped material with x2 >

x > x1 (x2 - 0.06 and x I  0.017). We consider the following seven possible

superconducting states: (I) A1  0, A2 -A - 0, (II) A2 - 0, A1 -A0 - 0,

(III) A1 , A 2 0 0, A0 -0, (IV) A0  0, A1 - A2 - 0, (V) A0, A1 1 0, a2 - 0,

(VI) A0 I A 2 A 0, A1 - 0 and finally (VII) A0, Al, A2 0 0.

For a transition to a superconducting d-state, the case T2 > TO and T

T. is appropriate. For (a) 76 > 0 and 02 - 01 ± r/2, state I or state III is

favored depending on whether 7 > 202 or 202 - 171 > 0, respectively; for (b)

16 < 0 and 02 - 1 ± r, state I or state III is favored depending on whether

7(1+6) > 2,82 or 2P2 17(1+6)1 > 0, respectively. Near T2 (> T.) state I is

stable with respect to non-vanishing A0 and A2 since these two order

parameters produce a second-order effect through A0A2 . State II is normally

degenerate with state I in the absence of coupling; however, the (s+d)-

coupling lifts this degeneracy and makes state II unstable with respect to

state VI. With a decrease of temperature, state III goes over to state VII

since coupling to A 0 becomes important. In view of the restrictions on the

fourth-order coefficients imposed in the previous paragraph, we favor state

III as the higher-temperature d-state for the undoped material. Taking 7 < 0,



71 > 0, Y2 < 0, 6 < 0 and 62 < 0, we have minimized Eq. (2) numerically in the

five-dimensional space of the order parameters and the relative phase angles.

Our plots for the normalized order parameters and the phase angle 61, as a

function of temperature are given in Fig. 1; 02 exhibits a constant value of

ir/2.

For a superconducting transition from the normal to the s-wave state, as

occurs in the doped material, the choice T > T2 with T = T0 is appropriate.

Taking all other parameters exactly the same as in Fig. 1, state IV is

favored. With a decrease of temperature, the d-wave states get populated at a

temperature T 2 which is slightly up-shifted from T2. The s-wave and d-wave

order parameters coexist giving rise to state VII. Note that state V is

unstable with respect to state VII, since the linear term involving A2 acts

as an "applied field" and lowers the free energy. Our numerical results

appropriate for the doped materials are plotted in Fig. 2. For this figure we

find that state VII is stable with respect to state VI.
2 2

The d-wave superconducting states have some characteristic signatures

such as power-law temperature dependencies in specific heat, muon spin

rotation, nuclear magnetic resonance and ultrasonic sound attenuation

experiments. These are associated with vanishing of the gap function along

certain symmetry lines or planes near the Fermi surface. Another

characteristic signature is the dynamics of the relative phase angles O1 and 62

due to (s+d)-coupling, similar to the internal Josephson effect in superfluid

3He.1314 The particle numbers N1 and N 2 (relative to NO) are conjugate to

the phase angles 81 and 02 and obey the commutation relations [9i,N.] l i6.
1 J J

We generalize Eqs. (2) to include the chemical potentials and linearize the0 0
associated Hamilton's equations about 1 and 0 the minimum solutions. The

1 2

characteristic phase oscillation frequencies w are then obtained by solving

0
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the secular equation, (allw )(a22  ) - al2a2 1 - 0, where a.. -

(a2 FL/8ai aj), i,j - 1,2. The solution of the characteristic equation is
23

andlogous to that of a double pendulum in which the higher frequency normal

mode is connected with a symmetric vibration and the lower frequency one with

an asymmetric vibration. For solutions corresponding to Fig. 1, we find that

the high-frequency mode appears at the first transition, whereas the low

frequency mode appears at the second transition. In contrast, both the normal

mode solutions for Fig. 2 appear at the second transition (since the first

transition is to a pure s-wave state, there is no coupling). These

charactertistic phase oscillations thus provide a method to identify the

superconducting states. At low temperatures, the high-frequency fundamental

vibration can couple to even-harmonics (the odd-harmonics are absent) of the

low-frequency fundamental mode, thus producing a resonance. Our predictions

in this regard are in sharp contrast to that of KW, who argued for a single

dynamic frequency. We find that the fundamental frequencies increase

monotonically as T - 0, and we do not find any evidence for non-monotonic

behavior as suggested by KW.

Finally, we would like to comment on the gradient terms FG of the free

energy density. For an applied magnetic field H along the z-direction, H -

(O,O,H), we choose the vector potential in the Landau gauge, X - (O,A y,0), Ay

- xM. With 0 " hc/2e, we obtain the invariant terms by setting up covariant

differential operators. For the sake of simplicity, we assume a one

dimensional coordinate dependence of the order parameter amplitudes: .j(r)

qj(x) - Aj(x) exp(ig ), j - 0,1,2, denote derivatives with respect to x by

primes and obtain 24for FG - GKW + GE

% %.



G K I 0 A + (22r/ D0) A YA 0 + Ia 212[Ai 2 + 6 ij+ (21r/D 0) AAy(2 + At)1 (3a) I
and

GE - Ia 2k A '2jAj2+I3 AjA cos( 2 _a1 ) + (2x/O0 ) 
2 A2[A2.A 2./AIA2 cos(6 2 .01 )} +

Ia2  d[6(fAl o1 - cose2- (27r/O 0)
2A2 A (r3A cosa + A Cosa (3b)I c2 d 1 Co92 0 y 0 11 2 2

Here 0 is the flux quantum; %0p 2' d and sd are coherence lengths. We

have separated the terms in Eq. (3) in the same spirit as that of Eq. (2).

Note that the coefficients of the sd-terms mix the s- and d-waves; note also

sddthat there is an extra d-wave invariant whose coefficient is 2d which was not

considered by KW. Employing Eqs. (2) and (3), we obtain the differential

Ginzburg-Landau (GL) equations and use them to derive expressions for the

upper and the lower critical fields H and H , respectively.

The upper critical field is the highest field at which the normal state
2

free energy equals that of the mixed state. For simplicity, we set sd 0 and

obtain:

II
SH2 (00/2r)[c 4 4 ) + 2 2 20]/[(c+2)( -4_ O 4, (for Fig. 1), (4a)

H2 (02)I2'/[( O +2c' 2)2 12c' d]h (for Fig. 2) (4b)

}'; ~ The coefficients c and c' are defined as A0/A and A/A 0 respectively (A - Am

A2 and are related in a complicated way to the nonlinear terms of FL' Since

c and c' are less than one, the effective coherence length is dominated by 2

r.w'2
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2 i
or 2 as the case may be. Setting them to zero we recover the expected

limits. In deriving Eq. (4) we have found the ground state simple harmonic

oscillator solutions to the linearized GL equations to be adequate.

The lower critical field, i.e., the field at which the Meissner state is

thermodynamically stable, is directly proportional to the super-electron

density. Consequently, the transition to the mixed (s+d)-wave state should be

accompanied by an increase in the temperature coefficient of H as observea

25

in Ref. 3. By assuming the large .(- X/{) solution for H and the London

form for the supercurrent, we can write H - (0 n Ke /(20 f2 ), with A- 2
c1 0 eff eff' eff

-2 +-2 + 2 ()-2 where (A)-2 2 2 2 22 (X)-2 2 2 2 2(A) (k )) , wee(.) - 16w 0 %0A0/ 0. As - 32,r e22 /"0

2 -2 2
and (Aa) - (/2)(A) -2(d/Y2 cos(O 1 -92). The large effect of the relative

phase difference (81-02) on (A)-2 may explain the anomaly in Keff near the
26

lower transition temperature reported in Ref. 
3. 2

In summary, we have derived, from general symmetry principles, the

Ginzburg-Landau free energy for the mixed A x E representation of the 4
lg g

octahedral point group relevant for pure and thorium-doped UBe1 3. By detailed

numerical work, we have obtained the nature of the superconducting states that

might exist in this system. We have predicted the existence of a symmetric

and an asymmetric normal-mode phase oscillation frequency characteristic of

the coupled states. Finally, we have examined the behavior of the critical

fields for this system.

ir
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Figure Captions

1. Temperature dependence of order parameters (OP) A0 and A (-A1-A2) and

phase angle 01 for critical temperatures T2/Tc - i and T0/T2 - 0.75 and

phase angle 62 - w/2. This figure is appropriate for undoped UBeI 3 . The

x-axis and the left-hand side y-axis variables are in dimensionless units.

2. Same as in Figure 1, but with To/T c - 1 and T2/T0 - 0.75. This figure is

appropriate for Ulx ThxBe1 3.

.*x
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